sudut sudut berelasi
Jesika Aprilia Jayanti
Rumus Sudut Berelasi
Dengan memanfaatkan sudut-sudut relasi, kita dapat menghitung nilai perbandingan pada trigonometri untuk sudut pada kuadran lainnya, termasuk sudut yang lebih dari 360° dan sudut negatif.
Sudut Berelasi di Kuadran I
Untuk α = sudut lancip, maka (90° − α) merupakan sudut-sudut kuadran I. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut :
sin (90° − α) = cos α
cos (90° − α) = sin α
tan (90° − α) = cot α
Sudut Berelasi di Kuadran II
Untuk α = sudut lancip, maka (90° + α) dan (180° − α) merupakan sudut-sudut kuadran II. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut :
sin (90° + α) = cos α
cos (90° + α) = -sin α
tan (90° + α) = -cot α
sin (180° − α) = sin α
cos (180° − α) = -cos α
tan (180° − α) = -tan α
Sudut Berelasi Kuadran III
Untuk α = sudut lancip, maka (180° + α) dan (270° − α) merupakan sudut kuadran III. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut :
sin (180° + α) = -sin α
cos (180° + α) = -cos α
tan (180° + α) = tan α
sin (270° − α) = -cos α
cos (270° − α) = -sin α
tan (270° − α) = cot α
Sudut Berelasi Kuadran IV
Untuk α = sudut lancip, maka (270° + α) dan (360° − α) merupakan sudut kuadran IV. Dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut :
sin (270° + α) = -cos α
cos (270° + α) = sin α
tan (270° + α) = -cot α
sin (360° − α) = -sin α
cos (360° − α) = cos α
tan (360° − α) = -tan α
Ada 2 hal yang harus diperhatikan, yaitu sudut relasi yang dipakai dan tanda untuk tiap kuadran.
Untuk relasi (90° ± α) atau (270° ± α), maka :
sin → cos
cos → sin
tan → cot
Sedangkan untuk relasi (180° ± α) atau (360° ± α), maka :
sin = sin
cos = cos
tan = tan
Tabel Sudut Berelasi
Berikut adalah table sudut berelasi sin, cos, tan, cosec, sec, dan cotan di kuadran I, II, III, dan IV.
Kuadran l | Kuadran ll | Kuadran III | Kuadran IV | |
Sin α | Cos (90° – α) | Sin (180° – α) | –Sin (180° + α) | –Sin (360° – α) |
Cos α | Sin (90° – α) | –Cos (180° – α) | –Cos (180° + α) | Cos (360° – α) |
Tan α | Cotan (90° – α) | –Tan (180° – α) | Tan (180° + α) | –Tan (360° – α) |
Cosec α | Sec (90° – α) | Cosec (180° – α) | –Cosec (180° + α) | –Cosec (360° – α) |
Sec α | Cosec (90° – α) | –Sec (180° – α) | –Sec (180° + α) | Sec (360° – α) |
Cotan α | Cotan (90° – α) | –Cotan (180° – α) | Cotan (180° + α) | –Cotan (360° – α) |
Tanda masing-masing kuadran
Kuadran I (0 − 90°) = semua positif
Kuadran II (90° − 180°) = sinus positif, lainnya negatif
Kuadran III (180° − 270°) = tangen positif, lainnya negatif
Kuadran IV (270° − 360°) = cosinus positif, lainnya negatif
Contoh soal 1
Hitunglah nilai dari cos 120°.
Penyelesaian soal
Untuk menjawab soal ini dapat menggunakan 2 cara. Cara 1 menggunakan komplemen 90° sehingga diperoleh cos 120° = cos (90° + 30°). Disini, sudut (90° + 30°) berada di kuadran II sehingga menghasilkan tanda negatif (-) dan karena menggunakan komplemen 90° maka cos menjadi sin sehingga Cos 120° = – sin 30° = – 1/2.
Cara 2 menggunakan komplemen 180° (cos tetap cos) sehingga diperoleh cos 120&176; = cos (180° – 60°) = – cos 60° = – 1/2.
Contoh soal 2
Hitunglah nilai dari sin 150°.
Penyelesaian soal
Cara 1 menggunakan komplemen 90 sehingga diperoleh sin 150° = sin (90° + 60°) = cos 60° = 1/2.
Cara 2 menggunakan komplemen 180 diperoleh sin 150° = sin (180° – 30°) = sin 30° = 1/2.
Contoh soal 3
Hitunglah nilai dari sin 225°.
Penyelesaian soal
Cara 1 menggunakan komplemen 180 diperoleh sin 225° = sin (180° + 45°) = – sin 45° = – 1/2 √2.
Cara 2 menggunakan komplemen 270° diperoleh sin 225° = sin (270° – 45°) = – cos 45° = – 1/2 √2.
Contoh soal 4
Hitunglah nilai dari sin 330° + 2 cos 240° – sin 210°.
Penyelesaian soal
sin 330° + 2 cos 240° – sin 210° = sin (270° + 60°) + 2 cos (270° – 30°) – sin (270° – 60°) = – cos 60° + 2 sin 30° – (- cos 60°) = – 1/2 + 1 + 1/2 = 1.
Contoh soal 5
Hitunglah nilai dari sin 120° + cos 225° – cos 30°.
Penyelesaian soal
sin 120° + cos 225° – cos 30° = sin (90° + 30°) + cos (180° + 45°) – cos 30° = cos 30° + cos 45° – cos 30° = cos 45° = 1/2 √2.
Contoh soal 6
Hitunglah hasil dari soal dibawah ini:
Penyelesaian soal
Jawaban dari soal diatas sebagai berikut:
Komentar
Posting Komentar