sudut sudut berelasi

Jesika Aprilia Jayanti

 X MIPA 1

Rumus Sudut Berelasi

Dengan memanfaatkan sudut-sudut relasi, kita dapat menghitung nilai perbandingan pada trigonometri untuk sudut pada kuadran lainnya, termasuk sudut yang lebih dari 360° dan sudut negatif.

Sudut Berelasi di Kuadran I

Untuk α = sudut lancip, maka (90° − α) merupakan sudut-sudut kuadran I. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut :

sin (90° − α) = cos α

cos (90° − α) = sin α

tan (90° − α) = cot α

Sudut Berelasi di Kuadran II

Untuk α = sudut lancip, maka (90° + α) dan (180° − α) merupakan sudut-sudut kuadran II. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut :

sin (90° + α) = cos α

cos (90° + α) = -sin α

tan (90° + α) = -cot α

sin (180° − α) = sin α

cos (180° − α) = -cos α

tan (180° − α) = -tan α

Sudut Berelasi Kuadran III

Untuk α = sudut lancip, maka (180° + α) dan (270° − α) merupakan sudut kuadran III. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut :

sin (180° + α) = -sin α

cos (180° + α) = -cos α

tan (180° + α) = tan α

sin (270° − α) = -cos α

cos (270° − α) = -sin α

tan (270° − α) = cot α

Sudut Berelasi Kuadran IV

Untuk α = sudut lancip, maka (270° + α) dan (360° − α) merupakan sudut kuadran IV. Dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut :

sin (270° + α) = -cos α

cos (270° + α) = sin α

tan (270° + α) = -cot α

sin (360° − α) = -sin α

cos (360° − α) = cos α

tan (360° − α) = -tan α

Ada 2 hal yang harus diperhatikan, yaitu sudut relasi yang dipakai dan tanda untuk tiap kuadran.

Untuk relasi (90° ± α) atau (270° ± α), maka :

sin → cos

cos → sin

tan → cot

Sedangkan untuk relasi (180° ± α) atau (360° ± α), maka :

sin = sin

cos = cos

tan = tan

Tabel Sudut Berelasi

Berikut adalah table sudut berelasi sin, cos, tan, cosec, sec, dan cotan di kuadran I, II, III, dan IV.

           Kuadran l                 Kuadran llKuadran IIIKuadran IV
Sin αCos (90° – α)Sin (180° – α)Sin (180° + α)Sin (360° – α)
Cos αSin (90° – α)Cos (180° – α)Cos (180° + α)Cos (360° – α)
Tan αCotan (90° – α)Tan (180° – α)Tan (180° + α)Tan (360° – α)
Cosec αSec (90° – α)Cosec (180° – α)Cosec (180° + α)Cosec (360° – α)
Sec αCosec (90° – α)Sec (180° – α)Sec (180° + α)Sec (360° – α)
Cotan αCotan (90° – α)Cotan (180° – α)Cotan (180° + α)Cotan (360° – α)

Tanda masing-masing kuadran

Kuadran I (0 − 90°) = semua positif

Kuadran II (90° − 180°) = sinus positif, lainnya negatif

Kuadran III (180° − 270°) = tangen positif, lainnya negatif

Kuadran IV (270° − 360°) = cosinus positif, lainnya negatif

Contoh soal 1

Hitunglah nilai dari cos 120°.

Penyelesaian soal

Untuk menjawab soal ini dapat menggunakan 2 cara. Cara 1 menggunakan komplemen 90° sehingga diperoleh cos 120° = cos (90° + 30°). Disini, sudut (90° + 30°) berada di kuadran II sehingga menghasilkan tanda negatif (-) dan karena menggunakan komplemen 90° maka cos menjadi sin sehingga Cos 120° = – sin 30° = – 1/2.

Cara 2 menggunakan komplemen 180° (cos tetap cos) sehingga diperoleh cos 120&176; = cos (180° – 60°) = – cos 60° = – 1/2.


Contoh soal 2

Hitunglah nilai dari sin 150°.

Penyelesaian soal

Cara 1 menggunakan komplemen 90 sehingga diperoleh sin 150° = sin (90° + 60°) = cos 60° = 1/2.

Cara 2 menggunakan komplemen 180 diperoleh sin 150° = sin (180° – 30°) = sin 30° = 1/2.


Contoh soal 3

Hitunglah nilai dari sin 225°.

Penyelesaian soal

Cara 1 menggunakan komplemen 180 diperoleh sin 225° = sin (180° + 45°) = – sin 45° = – 1/2 √2.

Cara 2 menggunakan komplemen 270° diperoleh sin 225° = sin (270° – 45°) = – cos 45° = – 1/2 √2.


Contoh soal 4

Hitunglah nilai dari sin 330° + 2 cos 240° – sin 210°.

Penyelesaian soal

sin 330° + 2 cos 240° – sin 210° = sin (270° + 60°) + 2 cos (270° – 30°) – sin (270° – 60°) = – cos 60° + 2 sin 30° – (- cos 60°) = – 1/2 + 1 + 1/2 = 1.


Contoh soal 5

Hitunglah nilai dari sin 120° + cos 225° – cos 30°.

Penyelesaian soal

sin 120° + cos 225° – cos 30° = sin (90° + 30°) + cos (180° + 45°) – cos 30° = cos 30° + cos 45° – cos 30° = cos 45° = 1/2 √2.


Contoh soal 6

Hitunglah hasil dari soal dibawah ini:

Contoh soal sudut berelasi

Penyelesaian soal

Jawaban dari soal diatas sebagai berikut:

Sudut berelasi

Contoh soal 7

Hitunglah nilai dari sin 330°.

Penyelesaian soal

Dengan menggunakan komplemen 360° diperoleh sin 330° = sin (360° – 30°) = – sin 30° = – 1/2.


Contoh soal 8

Hitunglah nilai dari cos 660°.

Penyelesaian soal

cos 660° = cos (2 . 360° – 60°) = cos (270° – 60°) = cos 60° = 1/2.


Contoh soal 9

Hitunglah nilai dari sin 1110°.

Penyelesaian soal

sin 1110° = sin (3 . 360° + 30°) = sin 30° = 1/2.


Contoh soal 10

Hitunglah nilai dari cos 990°.

Penyelesaian soal

cos 990° = cos (3 . 360° – 90°) = cos 90° = 0.

Komentar

Postingan populer dari blog ini

SOAL KONTEKSTUAL BERKAITAN PERBANDINGAN TRIGONOMETRI PADA SEGITIGA SIKU-SIKU, SUDUT ELEVASI DAN SUDUT DEPRESI

SPLDV